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Abstract
We study the asymptotics of the heat trace Tr

{
f P e−tP 2}

where P is an operator
of Dirac type, where f is an auxiliary smooth smearing function which is used
to localize the problem, and where we impose spectral boundary conditions.
Using functorial techniques and special case calculations, the boundary part of
the leading coefficients in the asymptotic expansion is found.

PACS numbers: 02.40.Vh, 03.70.+k
Mathematics Subject Classification: 58J50

1. Introduction

Let P be an operator of Dirac type with leading symbol γ on a vector bundle V over a compact
m-dimensional Riemannian manifold M with smooth boundary ∂M . One may choose a
Hermitian inner product (·, ·) and a Hermitian connection ∇ on V so that γ is skew-adjoint
and so that ∇γ = 0 [11]; such structures are said to be compatible with the given Clifford
module structure γ . Let indices i, j range from 1 to m and index a local orthonormal frame
{ei} for the tangent bundle of M. We adopt the Einstein convention and sum over repeated
indices to expand

P = γi∇ei
+ ψP

where ψP is a smooth endomorphism of V ; the sign convention for ψP differs from that in
[11, 12]. Note that the matrices γi are skew-adjoint endomorphisms of V satisfying the
Clifford commutation relations

γiγj + γjγi = −2δij .

If ∂M is non-empty, then we must impose suitable boundary conditions. For m even,
P always admits local elliptic boundary conditions; see, for example, the discussion of bag
boundary conditions in [7, 8]. However, if m is odd, there is a topological obstruction to the
existence of local boundary conditions for certain operators. We therefore introduce spectral
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boundary conditions; these boundary conditions, which are defined regardless of the parity of
m, play a crucial role in the index theorem for manifolds with boundary [3].

Spectral boundary conditions were first introduced by Atiyah et al [3] in their study of the
Hirzebruch signature theorem for manifolds with non-empty boundary. The crucial point at
issue was the definition of a suitable elliptic boundary value problem for the signature operator
whose index was the signature of the manifold. Although the de Rham complex, whose index is
the Euler characteristic, admits local boundary conditions (i.e. boundary conditions which are
a mixture of Robin and Dirichlet), the signature complex does not. The signature complex does
admit spectral boundary conditions—these are pseudo-differential boundary conditions—and
their introduction was a crucial turning point.

In order to describe these boundary conditions, near the boundary we choose a local
orthonormal frame so em is the inward unit geodesic normal vector field and {ea} for
1 � a � m − 1 is the induced orthonormal frame for the tangent bundle of the boundary. Let

γ T
a := −γmγa

be the induced tangential Clifford module structure. Let ψA be an auxiliary smooth
endomorphism of V |∂M . Consider the auxiliary operator of Dirac type on V |∂M

A := γ T
a ∇ea

+ ψA.

Assume A has no purely imaginary eigensections. Let C be a suitable contour in the
complex plane containing the spectrum of A with positive real part. Let

�+
A := 1

2π
√−1

∫
C

(A − λ)−1 dλ

be the spectral boundary operator; �+
A is spectral projection on the generalized eigenspaces

associated to eigenvalues with positive real part. Let PA be the realization of P with respect
to the boundary conditions defined by �+

A.
The spectral information regarding this boundary value problem is encoded in the zeta

function and the eta function which are defined as follows. Assume for the sake of simplicity
that PA is self-adjoint (we will be forced to drop this requirement presently). Let (λl, ϕl) be a
spectral resolution of PA; {ϕl} is a complete orthonormal basis for L2(V ) such that

PAϕl = λlϕl, �+
Aϕl

∣∣
∂M

= 0.

Then the zeta function associated with P 2
A is

ζ(s;P,A) :=
∑
λl �=0

(
λ2

l

)−s
(1a)

valid for �s > m/2. Note, the fact that PA as a first order differentiable operator can have
positive and negative eigenvalues does not enter the zeta function of the Laplace-type operator
P 2

A. However, the sign is taken into account defining the eta function of PA

η(s;P,A) :=
∑
λl �=0

sign(λl)|λl|−s , (1b)

valid for �s > m − 1. Similarly, one can define ζ(s;A) and η(s;A); since ∂M is closed,
there is no boundary condition required.

Although the above series representations (1a) and (1b) are valid only in the given region of
the complex s-plane, the eta and zeta functions can be analytically continued to meromorphic
functions defined on the whole complex plane. The value η(0;P,A) is essential for the
description of the index of PA.
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One can also discuss the heat trace. Let φ be the ‘initial temperature distribution’ and let
uφ(t, x) denote the subsequent temperature distribution. Then uφ(t, x) is determined by the
equations

(∂t + P 2)uφ(t, x) = 0, �+
Auφ

∣∣
∂M

= 0 and uφ(0, x) = φ(x).

The associated fundamental solution K : φ → uφ is then given by K = e−tP 2
A . Let dx

and dy be the Riemannian measures on M and on ∂M respectively. There exists a smooth
endomorphism-valued kernel K(t, x, x̄, P 2, A) : Vx̄ → Vx such that

uφ(t, x) = (Kφ)(t, x) =
∫

M

K(t, x, x̄, P 2, A)φ(x̄) dx̄.

For fixed t, the operator K(t) : φ → φ(t, ·) is of trace class. For F ∈ C∞(End(V )) a smooth
auxiliary smearing endomorphism used for localizing the problem, we define

aζ (F, P,A) := TrL2

(
F e−tP 2

A

) =
∫

M

TrVx
(F (x)K(t, x, x, P 2, A)) dx

aη(F, P,A) := TrL2

(
FPA e−tP 2

A

) =
∫

M

TrVx
(F (x)PAK(t, x, x, P 2, A)) dx.

Grubb and Seeley [25] showed that there are asymptotic expansions as t ↓ 0+ of the form

aζ (F, P,A) ∼
m−1∑
n=0

aζ
n(F, P,A)t(n−m)/2 + O(ln t),

aη(F, P,A) ∼
m−1∑
n=0

aη
n(F, P,A)t(n−m−1)/2 + O(t1/2 ln t).

(1c)

We refer to the coefficients a
ζ
n and a

η
n as the zeta and eta invariants respectively.

We note that there are in fact full asymptotic series for aζ and aη. However non-local
terms and log terms arise when n � m. Since we shall assume that n < m, these terms play
no role for us. We shall normally assume that F = f · Id where f ∈ C∞(M) is scalar valued,
but it will be convenient occasionally to have this more general setting available.

The Mellin transform can be used to relate the zeta and eta functions and the small-t
asymptotic expansion of the heat-trace. For f = 1, one has [21, 41]

Res ζ

(
m − n

2
;P,A

)
= a

ζ
n(1, P ,A)

�
(

m−n
2

) ,

Res η(m − n;P,A) = 2a
η
n(1, P ,A)

�
(

m−n+1
2

) .

Similar formulae hold for the general endomorphism F; this will play an important role in our
subsequent development.

The heat trace coefficients a
ζ
n and a

η
n of equation (1c) are locally computable for n < m;

they play a crucial role in many areas. For example, the particular coefficient a
ζ
m is relevant in

the quantum mechanics of closed cosmologies, where it describes how quantum effects modify
the behaviour of the universe near classical singularities [14, 18, 40]. More generally, the
leading coefficients a

ζ
n, n = 0, 1, . . . , m are needed in different quantum field theories. These

theories are generically plagued by divergences which are removed by a renormalization.
In the zeta function scheme [17], as well as in the framework of recent developments of
algebraic quantum field theory [33], at one-loop, divergences are completely described by the
leading coefficients. As a result, their knowledge is equivalent to a knowledge of the one-loop
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renormalization group equations [43], which provides one reason for the consideration of heat
kernel coefficients in physics. In addition, if an exact evaluation of relevant quantities is not
possible, asymptotic expansions are often very useful and most suitably given in terms of heat
kernel coefficients [5, 15]. In this context of quantum field theories, apart from cosmology,
spectral boundary conditions most prominently make their appearance in bag models where
they have important advantages over local elliptic boundary conditions. In particular, it is the
only self-adjoint boundary condition which respects the charge conjugation property and the
so-called γ5 symmetry [19, 27, 34]. In Euclidean gauge field theories, this property enables
one to consider a compactified Dirac problem where spectral information such as functional
determinants are directly related to the original problem [28, 42].

Whereas the above relates to a
ζ
n , the η-function arises in the analysis of fermion number

fractionization in different field theory models [35, 36, 39]. The fermion number N is a
transcendental function of the parameters of the theory and is related to η(0;H,A) of the
pertinent Dirac Hamiltonian H and boundary operator A. In a simplified consideration [30]
the fermion number of the vacuum will be formally obtained by filling the Dirac sea,

N = [number of negative-energy states of H ]

= 1
2 {[(numb. of pos.-en. states of H) + (numb. of neg.-en. states of H)]

− [(numb. of pos.-en. states of H) − (numb. of neg.-en. states of H)]}
Regularizing this divergent expression it becomes (1/2)[0 − η(0;H,A)]. A rigorous proof
can be found in [31].

Furthermore, interpreting (1a) and (1b) as a moment problem for the spectral density
function, even and odd part of the density can be found provided ζ(s;H,A) and η(s;H,A)

can be evaluated [37]. Knowledge of the leading coefficients a
ζ
n respectively a

η
n amounts to

an asymptotic knowledge of the even and odd part of the density for large eigenvalues |λl|
opening up the possibility for the approximate evaluation of different quantities in quantum
field theories as for example the finite temperature induced fermion number [36].

The invariants a
ζ
n have been studied extensively [16, 23, 25, 26]; the invariants a

η
n have

received a bit less attention. We may decompose

aζ
n(F, P,A) = aζ,M

n (F, P ) + aζ,∂M
n (F, P,A),

and

aη
n(F, P,A) = aη,M

n (F, P ) + aη,∂M
n (F, P,A)

as the sum of interior and boundary contributions. There exist local endomorphism valued
invariants eζ,M

n (x, P ) and eη,M
n (x, P ), which are homogeneous of weight n in the jets of the

total symbol of P, so that

aζ,M
n (F, P ) =

∫
M

Tr
{
F(x) eζ,M

n (x, P )
}

dx,

and

aη,M
n (F, P ) =

∫
M

Tr
{
F(x) eη,M

n (x, P )
}

dx.

We note that there is a parity constraint for the interior invariants

aζ,M
n = 0 if n is odd and aη,M

n = 0 if n is even.

Formulae for the invariants a
ζ,M
n for n = 0, 2, 4, 6, 8 follow from work of [2, 4, 20, 32];

similar formulae for the invariants a
η,M
n are known for n = 1, 3 [11].

Let ∇k
mF denote the kth normal covariant derivative of the endomorphism F. There are

local invariants eζ,∂M

n,k (y, P,A) and eη,∂M

n,k (y, P,A) which are homogeneous of weight n−k−1
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in the jets of the total symbol of P and of A so that

aζ,∂M
n (F, P,A) =

∑
k<n

∫
∂M

Tr
{∇k

mF (y) · eζ,∂M

n,k (y, P,A)
}

dy

and

aη,∂M
n (F, P,A) =

∑
k<n

∫
∂M

Tr
{∇k

mF (y) · eη,∂M

n,k (y, P,A)
}

dy.

Let ij be the curvature of the connection ∇. We define

Wij := ij − 1

4
Rijklγkγ�, β(m) := �

(m

2

)
�

(
1

2

)−1

�

(
m + 1

2

)−1

,

and

E := 1

2
(ψP ;iγi − γiψP ;i ) − ψ2

P − 1

4
(ψP γi + γiψP )(ψP γi + γiψP ) − 1

2
γiγjWij − 1

4τ.

Let τ := Rijji be the scalar curvature and let Lab be the second fundamental form. We can
use [11, 16, 23] to see

Theorem 1.1. If PA is self-adjoint, if A is self-adjoint, and if F = f · Id is scalar,

(i) a
ζ

0 (F, P,A) = (4π)−m/2
∫
M

f Tr{Id} dx.

(ii) If m � 2, a
ζ

1 (F, P,A) = (4π)−(m−1)/2 1
4 (β(m) − 1)

∫
∂M

f Tr{Id} dy.

(iii) If m � 3, a
ζ

2 (F, P,A) = (4π)−m/2
∫
M

f Tr
{

1
6τ Id + E

}
dx

+ (4π)−m/2
∫
∂M

{
1
3

(
1 − 3

4πβ(m)
)
Laaf − m−1

2(m−2)

(
1 − 1

2πβ(m)
)
f;m

}
Tr{Id} dy.

We refer to [23] for the corresponding computation of a
ζ

3 (f,D,B). In this paper, we
establish formulae for a

η
n without self-adjointness assumptions:

Theorem 1.2. Let F = f · Id be scalar, then

(i) a
η

0 (F, P,A) = 0.
(ii) If m � 2, a

η

1 (F, P,A) = (4π)−m/2(1 − m)
∫
M

f Tr{ψP } dx.
(iii) If m � 3, a

η

2 (F, P,A) = (4π)−(m−1)/2
∫
∂M

f Tr
{

2−m
4 (β(m) − 1)ψP − 1

4β(m)γmψA

}
dy.

(iv) If m � 4, a
η

3 (F, P,A) = − 1
12 (4π)−m/2

∫
M

f Tr{[2(m − 1)ψP ;i + 3(4 − m)ψP γiψP

+ 3γjψP γjγiψP ];i + (3 − m){τψP + 6γiγjWijψP − 6ψP ψP ;iγi + (4 − m)ψP ψP ψP

+ 3ψP ψP γiψP γi}} dx + (4π)−m/2
∫
∂M

Tr
{

(m−3)(m−1)

2(m−2)

(
1 − 1

2πβ(m)
)
f;mψP

− f (3−m)2

4(m−2)
(ψP ψA + γmψP γmψA) + f 3−m

3

(
1 − 3

4πβ(m)
)
LaaψP

+ f
{

(m−3)(m−1)

2(m−2)

(
1 − 1

2πβ(m)
) − 1

6 (m − 1)
}
ψP ;m

− f 3−m
4(m−2)

(
γ T

a ψP γ T
a ψA − γaψP γaψA + 2γmγ T

a ψAγ T
a ψA

)
+ 1

2(m−2)

(
1 − 1

2π(m − 1)β(m)
)(

m−3
1−m

f Laa + f;m
)
γmψA

}
dy.

As the interior integrands a
η,M

1 and a
η,M

3 were determined previously by Branson and
Gilkey [11], we shall concentrate upon determining the boundary integrands.

Here is a brief outline to the paper. In section 2, we derive some basic functorial
properties of these invariants. One of the peculiarities of using the ‘functorial approach’ is that
it is necessary to work in a very general context and then specialize subsequently. To employ
this method, we will have to work with operators which are not self-adjoint despite the fact
that the examples which arise in practice are usually self-adjoint. In section 3, we express the
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invariants a
η,∂M
n in terms of a Weyl basis with certain undetermined coefficients and begin the

evaluation of these coefficients. We complete the proof of theorem 1.2 in sections 4 and 5 by
completing the determination of the coefficients.

2. Functorial properties

We refer to [22, 23] for the proof of the following result which describes the adjoint structures:

Lemma 2.1. Let P ∗ be the formal adjoint of P, let A∗ be the formal adjoint of A, and let
A# := γmA∗γm.

(i) The operator A# defines the adjoint boundary condition for P ∗.
(ii) We have ψP ∗ = ψ∗

P , ψA∗ = ψ∗
A, and ψA# = γmψ∗

Aγm + LaaId.
(iii) If ψP is self-adjoint, and if ψA = γmψ∗

Aγm + LaaId, then PA is self-adjoint on L2(V ).

The next observation follows from work of Grubb and Seeley [26].

Lemma 2.2. Let n < m. Assume that the metric on M is product near the boundary, that PA

is self-adjoint, that A is self-adjoint and that the coefficients of P and of A are independent of
the normal variable near the boundary. Let F be an endomorphism of V whose coefficients
are independent of the normal variable near the boundary.

(i) If n is even, then a
ζ,∂M
n (F, P,A) = − 1

2(m−n)�( 1
2 )

a
η

n−1(F,A).

(ii) If n is odd, then a
ζ,∂M
n (F, P,A) = 1

4 (β(m − n + 1) − 1)a
ζ

n−1(F,A).

Taking the adjoint yields yet another useful property.

Lemma 2.3. Let n < m. Let (P,A) be real operators on a real bundle V . Suppose V is
equipped with a fibre metric. Let P ∗ be the formal adjoint of P and let F ∗ be the adjoint of F.
Set A# = γmA∗γm. Then a

η,∂M
n (F, P,A) = a

η,∂M
n (F ∗, P ∗, A#).

Proof. As we are in the real setting, taking the complex conjugate plays no role. Consequently

TrL2

{
FP e−tP 2

A

} = TrL2

{
F ∗P ∗ e−t (P ∗

A)2}
.

The lemma follows by equating powers of t in the asymptotic expansions and by using
lemma 2.1 to see that A# defines the adjoint boundary condition. �

There is a useful relation between the ζ and the η invariants.

Lemma 2.4. Let F ∈ C∞(end(V )). Let (A, P ) be as above and let n < m.

(i) Let Pε := P + εF . Then

(a) ∂εa
η
n(1, Pε, A) = (n − m)a

ζ

n−1(F, Pε, A).

(b) ∂εa
ζ
n(1, Pε, A) = −2a

η

n−1(F, Pε, A).

(ii) Let Pε := P + ε Id. Then

(a) ∂εa
η
n(F, Pε, A) = (n − m)a

ζ

n−1(F, Pε, A).

(b) ∂εa
ζ
n(F, Pε, A) = −2a

η

n−1(F, Pε, A).

(iii) Let Pε := e−εf P where f is a smooth scalar function vanishing on ∂M . Then
∂εa

η
n(1, Pε, A) = (m − n)a

η
n(f, Pε, A).
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Proof. To prove assertion (1), let Pε := P + εF . We compute∑
n

∂εa
η
n(1, Pε, A)t(n−m−1)/2 ∼ ∂ε Tr

{
Pε e−tP 2

ε,A

} = Tr
{
F
(
Id − 2tP 2

ε

)
e−tP 2

ε,A

}
= (1 + 2t∂t )Tr

{
F e−tP 2

ε,A

} ∼ (1 + 2t∂t )
∑

k

a
ζ

k (F, Pε, A)t(k−m)/2

=
∑

k

(1 + k − m)a
ζ

k (F, Pε, A)t(k−m)/2.

Setting k = n − 1 and equating terms in the asymptotic expansions establishes assertion (1a).
Similarly, we compute∑

n

∂εa
ζ
n(1, Pε, A)t(n−m)/2 ∼ ∂ε Tr

{
e−tP 2

ε,A

}
= −2t Tr

{
FPε e−tP 2

ε,A

} ∼
∑

k

−2a
η

k (F, Pε, A)t(k−m+1)/2.

Again, equating coefficients in the associated asymptotic expansions yields assertion (1b); the
proof of assertion (2) is similar and is therefore omitted. To prove assertion (3), we compute∑

n

∂εa
η
n(1, Pε, A)t(n−m−1)/2 ∼ ∂ε Tr

{
Pε e−tP 2

ε,A

}
= −Tr

{
f
(
Pε − 2tP 3

ε

)
e−tP 2

ε,A

} = −(1 + 2t∂t ) Tr
{
f Pε e−tP 2

ε,A

}
= −

∑
n

(1 + (n − m − 1))aη
n(f, Pε, A)t(n−m−1)/2.

Assertion (3) now follows by equating coefficients in the asymptotic expansions. �

We will need the following lemma to apply lemma 2.4. It involves a formula for
endomorphism valued smearing functions which is related to the product case and which
generalizes the formula of theorem 1.1 (3).

Lemma 2.5. Assume that the metric on M is product near the boundary, that PA is self-
adjoint, that A is self-adjoint, and that the coefficients of P and A are independent of the
normal variable near the boundary. Let F be an endomorphism of V whose coefficients are
independent of the normal variable near the boundary. If m � 3, then

a
ζ

2 (F, P,A) = (4π)−m/2
∫

M

Tr

{
F

(
1

6
τ + E

)}
dx

− 1

2(m − 2)
(4π)−m/2

∫
∂M

Tr
{
(3 − m)FψA + Fγ T

a ψAγ T
a

}
dy.

Remark 2.6. To ensure that PA is self-adjoint, we impose the relations of lemma 2.1 (3).
Since Laa = 0 by assumption, this means that ψA = γmψAγm and hence Tr{ψA} = 0. Thus
a

ζ,∂M

2 (Id, P ,A) = 0; this is in agreement with theorem 1.1 (3).

Proof. We refer to [12] for the determination of the interior integrand. Let N = ∂M . We
apply theorem 1.1 to the operator A on the closed manifold N to see

a
ζ

2 (1, A) = − 1

12
(4π)−(m−1)/2

∫
N

Tr
{
τ Id + (12 − 6(m − 1))ψ2

A + 6ψAγ T
a ψAγ T

a

}
dy.

We set Aε := A + εF . By lemma 2.4, with an appropriate dimension shift,

−2a
η

1 (F,A) = ∂ε|ε=0 a
ζ

2 (1, Aε)

= −1

6
(4π)−(m−1)/2

∫
N

Tr
{
F
[
(18 − 6m)ψA + 6γ T

a ψAγ T
a

]}
dy.
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Combining this result with lemma 2.2 (1) then yields

a
ζ,∂M

2 (F, P,A) = − 1

2(m − 2)
√

π
a

η

1 (F,A)

= − 1

12(m − 2)
(4π)−m/2

∫
∂M

Tr
{
(18 − 6m)FψA + 6Fγ T

a ψAγ T
a

}
dy. �

3. A formula with universal coefficients

As a
η
n(F,−P,A) = −a

η
n(F, P,A), the boundary contributions, which are homogeneous of

weight n − 1, must be odd functions of P. Consequently, they vanish for n = 0, 1; assertions
(1) and (2) of theorem 1.2 now follow. Furthermore, we have:

Lemma 3.1. There exist universal constants ci(m) so that

(i) a
η,∂M

2 (f, P,A) = (4π)−(m−1)/2
∫
∂M

f Tr
{
c1
mψP + c2

mγmψA

}
dy.

(ii) a
η,∂M

3 (f, P,A) = (4π)−m/2
∫
∂M

Tr
{
c3
mf γmψ2

P + c4
mf γmγ T

a ψP γ T
a ψP + c5

mf γmψ2
A

+ c6
mf ψP ψA + c7

mf γmψP γmψA + c8
mf γ T

a ψP γ T
a ψA + c9

mf γaψP γaψA

+ c10
m f γmγ T

a ψAγ T
a ψA + c11

m f ψP ;m + c12
m f LaaψP + c13

m f;mψP + c14
m f

(
γ T

a ψP

)
:a

+ c15
m f LaaγmψA + c16

m f;mγmψA + c17
m f (γaψA):a

}
dy.

Many invariants do not occur because the trace over an odd number of γ -matrices is zero.
Furthermore, invariants of the form Wabγmγaγb and Wamγa are omitted as their trace vanishes
as well.

We begin our study of these coefficients by varying the compatible connection chosen.

Lemma 3.2. We have the relations:

(i) c3
m = 0.

(ii) c6
m − c7

m + (m − 1)c8
m + (m − 1)c9

m = 0.

(iii) c6
m + c7

m + (m − 3)c8
m − (m − 3)c9

m + 2(m − 3)c4
m = 0.

(iv) c6
m + c7

m − (m − 3)c8
m + (m − 3)c9

m + 2(m − 3)c10
m = 0.

Proof. There always exist Hermitian connections so ∇γ = 0, see for example [11]. There
are, however, many such connections. If ω := �i ei is a purely imaginary 1 form, then
∇̃ := ∇ − ωId is again a Hermitian connection with ∇̃γ = 0. One has

ψ̃P = ψP + �iγi and ψ̃A = ψA + �bγ
T
b .

Clearly a
η
n does not depend on the particular connection chosen. We exhibit the terms which

are linear in � and omit the remaining terms to derive the following equations from which the
desired relations of the lemma will follow:

Tr
{
c3
mγmψ̃2

P

} = −2c3
m�mTr{ψP } + · · · ,

Tr
{
c4
mγmγ T

a ψ̃P γ T
a ψ̃P

} = c4
m Tr{−2(m − 3)γm�bγbψP } + · · · ,

Tr
{
c5
mγmψ̃2

A

} = 0 + · · · ,
Tr
{
c6
mψ̃P ψ̃A

} = c6
m Tr

{
�mγmψA + �bγbψA + ψP �bγ

T
b

}
+ · · · ,

Tr
{
c7
mγmψ̃P γmψ̃A

} = c7
m Tr

{−�mγmψA + �bγbψA + ψP �bγ
T
b

}
+ · · · ,
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Tr
{
c8
mγ T

a ψ̃P γ T
a ψ̃A

} = c8
m Tr

{
(m − 1)�mγmψA − (m − 3)�bγbψA + (m − 3)ψP �bγ

T
b

}
+ · · · ,

Tr
{
c9
mγaψ̃P γaψ̃A

} = c9
m Tr

{
(m − 1)�mγmψA + (m − 3)�bγbψA − (m − 3)ψP �bγ

T
b

}
+ · · · ,

Tr
{
c10
m γmγ T

a ψ̃Aγ T
a ψ̃A

} = c10
m Tr

{
2(m − 3)γm�bγ

T
b ψA

}
+ · · · . �

We shift the spectrum of A to show

Lemma 3.3. We have the relations:

(i) c5
m = 0.

(ii) c6
m = c7

m and c8
m = −c9

m.

Proof. If we replace A by A + εId, then the boundary condition is unchanged for small values
of ε. We set ψ̃A := ψA + εId, exhibit only the linear terms, and omit all terms which are not
linear in ε to derive the following equations:

Tr
{
c5
mγmψ̃2

A

} = 2c5
m Tr{γmεψA} + · · · ,

Tr
{
c6
mψP ψ̃A

} = c6
m Tr{εψP } + · · · ,

Tr
{
c7
mγmψP γmψ̃A

} = −c7
m Tr{εψP } + · · · ,

Tr
{
c8
mγ T

a ψP γ T
a ψ̃A

} = c8
m Tr{−(m − 1)εψP } + · · · ,

Tr
{
c9
mγaψP γaψ̃A

} = c9
m Tr{−(m − 1)εψP } + · · · ,

Tr
{
c10
m γmγ T

a ψ̃Aγ T
a ψ̃A

} = 0 + · · · .
Assertion (1) follows. Furthermore, we have

0 = c6
m − c7

m − (m − 1)c8
m − (m − 1)c9

m.

Assertion (2) follows from this equation and from lemma 3.2 (2). �

Lemma 3.4. We have c14
m = 0 and c17

m = 0.

Proof. We work on the flat annulus M := T
m−1 × [0, 1]. Let ha and Ha be real smooth

functions on M. We set

P = γi∂
x
i + εhaγ

T
a and A = γ T

a ∂y
a + εHbγb.

Let F = f · Id be scalar. The presence of the smearing function f ensures the boundary and
interior integrals do not interact. Modulo terms which are O(ε2), one has

a
η

3 (F, P,A) = −ε(4π)−m/2
∫

∂M

Tr
(
f
{
c14
m hb:b + c17

m Hb:b
})

dy + O(ε2).

By lemma 2.1,

P ∗ = γi∂
x
i − εhaγ

T
a , ψP ∗ = −εhaγ

T
a ,

A# = γmA∗γm = γm

(
γ T

a ∂
y
a − εHbγb

)
γm, ψA# = −εHbγb.

Consequently, there is a sign change

a
η

3 (F, P ∗, A#) = ε(4π)−m/2
∫

∂M

Tr
(
f
{
c14
m hb:b + c17

m Hb:b
})

dy + O(ε2).

By lemma 2.3, a
η

3 (f Id, P ∗, A#) = a
η

3 (f Id, P ,A); the lemma follows. �

We use conformal variations to show

Lemma 3.5. c15
m = m−3

1−m
c16
m .
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Proof. Let f be a smooth function with f |∂M = 0. Let ds2(ε) = e2εf ds2 and let
P(ε) := e−εf P . Let ∇ be a unitary connection with ∇γ = 0. Let x = (x1, . . . , xm) be
a system of local coordinates on M. Expand P = γ ν∇∂ν

+ ψP and use the metric to lower
indices and define γν . Define a smooth 1 parameter family of connections

∇(ε)∂µ
:= ∇∂µ

+
ε

2
{f;νγ νγµ + f;µ}.

Results of [16] show ∇(ε)γ (ε) = 0 and ∇(ε) is unitary. Furthermore,

ψP (ε) = e−εf

{
ψP − m − 1

2
εf;iγi

}
and ψA(ε) = ψA.

We suppose ψP = 0. We study the term Tr{f;mγmψA} and compute:

∂ε|ε=0 Tr
{
c6
mψP ψA + c7

mγmψP γmψA

} = −m − 1

2

(
c6
m − c7

m

)
Tr{f;mγmψA} = 0,

∂ε|ε=0 Tr
{
c8
mγ T

a ψP γ T
a ψA + c9

mγaψP γaψA

} = − (m − 1)2

2

{
c8
m + c9

m

}
Tr{f;mγmψA} = 0,

∂ε|ε=0Laa = (1 − m)f;m.

We concentrate on the term Tr{f;mγmψA} and compute

∂ε|ε=0 a
η

3 (1, P (ε), A) = (4π)−m/2
∫

∂M

c15
m Tr{(1 − m)f;mγmψA} dy

= (m − 3)a
η

3 (f, P (ε), A) = (4π)−m/2
∫

∂M

c16
m Tr{(m − 3)f;mγmψA} dy.

The lemma now follows. �

We study a variation of the form Pε := P + εId to establish

Lemma 3.6.

(i) c1
m = 2−m

4 (β(m) − 1).

(ii) c12
m = 3−m

3

(
1 − 3

4πβ(m)
)

and c13
m = (m−3)(m−1)

2(m−2)

(
1 − 1

2πβ(m)
)
.

Proof. Let ψP be self-adjoint. Set ψA := 1
2LaaId; then A# = A∗ = A and PA is self-adjoint.

Let Pε := P + εId. By theorem 1.1 and lemma 2.4

∂ε|ε=0 a
η,∂M

2 (f, Pε, A) = (4π)−(m−1)/2
∫

M

c1
mf Tr{Id} dy = (2 − m)a

ζ,∂M

1 (f, P,A)

= (4π)−(m−1)/2 2 − m

4
(β(m) − 1)

∫
∂M

f Tr{Id} dy

Assertion (1) follows. To establish assertion (2), we compute

Tr
{
c6
mψP ψA + c7

mγmψP γmψA

} = 1

2

(
c6
m − c7

m

)
Tr{ψP Laa} = 0,

Tr
{
c8
mγ T

a ψP γ T
a ψA + c9

mγaψP γaψA

} = (1 − m)

2

(
c8
m + c9

m

)
Tr{ψP Laa} = 0,

∂ε|ε=0 c4
m Tr

{
γmγ T

a ψP γ T
a ψP

} = c4
m Tr

(
γmγ T

a γ T
a ψP + γ T

a γmγ T
a ψP

) = 0.

Consequently again by theorem 1.1 and lemma 2.4 one has

∂ε|ε=0 a
η,∂M

3 (f, Pε, A) = (4π)−m/2
∫

∂M

Tr
{
c13
m f;m Id + c12

m f Laa

}
dy

= (3 − m)a
ζ,∂M

2 (f, P,A)
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= (3 − m)

∫
∂M

{
1

3

(
1 − 3

4
πβ(m)

)
Laaf

− m − 1

2(m − 2)

(
1 − 1

2
πβ(m)

)
f;m

}
Tr{Id} dy.

Assertion (2) follows. �

4. The variation Pε := P + εF

In this section, we will study ∂εa
η

3 (1, Pε, A). There is a non-trivial interaction between the
boundary and interior integrals that must be dealt with. Our basic identity is provided by
lemma 2.4,

∂ε|ε=0 a
η

3 (1, Pε, A) = (3 − m)a
ζ

2 (F, P,A). (4a)

Let F be endomorphism valued. Then

∂ε|ε=0 a
η,M

3 (1, Pε, A) = − 1

12
(4π)−m/2

∫
M

Tr{[2(m − 1)F;i + 3(4 − m)FγiψP

+ 3(4 − m)FψP γi + 3FγjγiψP γj + 3FγjψP γjγi];i
+ (3 − m)[Fτ + 6FγiγjWij − 6FψP ;iγi − 6F;iγiψP + 3(4 − m)FψP ψP

+ 3FψP γiψP γi + 3FγiψP γiψP + 3FγiψP ψP γi]} dx.

On the other hand, by lemma 2.5,

a
ζ,M

2 (F, P,A) = − 1

12
(4π)−m/2

∫
M

Tr
{
F
(
τ + 6γiγjWij + 6γiψP ;i − 6ψP ;iγi + 12ψ2

P

+ 3ψP γiψP γi + 3γiψP ψP γi + 3γiψP γiψP − 3mψ2
P

)}
dx.

Consequently, we may integrate by parts to see

∂εa
η,M

3 (1, Pε, A)|ε=0 − (3 − m)a
ζ,M

2 (F, P,A) = − 1

12
(4π)−m/2

∫
M

Tr{[2(m − 1)F;i

+ 3(4 − m)FγiψP + 3(4 − m)FψP γi + 3FγjγiψP γj + 3γjψP γjγiF ];i
− 6(3 − m)F;iγiψP − 6(3 − m)FγiψP ;i} dx

= 1

12
(4π)−m/2

∫
∂M

Tr{2(m − 1)F;m + 3(4 − m)FγmψP + 3(4 − m)FψP γm

+ 3FγjγmψP γj + 3FγjψP γjγm − 6(3 − m)FγmψP } dy. (4b)

After setting c3
m = c5

m = 0, c7
m = c6

m and c9
m = −c8

m, one has

∂εa
η,∂M

3 (1, Pε, A)|ε=0 = (4π)−m/2
∫

∂M

Tr
{
c4
mF

(
γ T

a ψP γmγ T
a + γmγ T

a ψP γ T
a

)
+ c6

mF(ψA + γmψAγm) + c8
mF

(
γ T

a ψAγ T
a − γaψAγa

)
+ c11

m F;m + c12
m FLaa

}
dy.

(4c)

There are several different settings where we know a
ζ,∂M

2 . For the next two lemmas,
to ensure that PA is self-adjoint, we shall assume ψP and ψA are self adjoint and that
ψA = γmψAγm + LaaId. We begin by applying theorem 1.1.

Lemma 4.1. We have

c11
m = (m − 3)(m − 1)

2(m − 2)

(
1 − 1

2
πβ(m)

)
− 1

6
(m − 1).
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Proof. We take F = f · Id to be scalar and set Pε := P + εF . The terms involving Tr(ψA)

and Tr(γmψP ) cancel and we have

0 = ∂εa
η

3 (1, Pε, A)|ε=0 − (3 − m)a
ζ

2 (F, P,A)

= Tr{Id}(4π)−m/2
∫

∂M

{(
1

6
(m − 1) + c11

m

)
f;m + c12

m f Laa

− 3 − m

3

(
1 − 3

4
πβ(m)

)
Laaf +

(m − 1)(3 − m)

2(m − 2)

(
1 − 1

2
πβ(m)

)
f;m

}
dy.

We equate the coefficients of f Laa to determine a value for c12
m which agrees with that obtained

in lemma 3.6. Equating the coefficients of f;m determines c11
m . �

We apply lemma 2.5 to prove

Lemma 4.2. We have the relations:

(i) c6
m = − (3−m)2

4(m−2)
, and c8

m = − 3−m
4(m−2)

.

(ii) c4
m = 0, and c10

m = −2 (3−m)

4(m−2)
.

Proof. We assume the structures are product near the boundary. We first study the
terms Tr{FψA} and Tr{γaFγaψA}. Since Laa = 0, γmψAγm = ψA. We compute using
equations (4b) and (4c) that

c6
m∂ε|ε=0Tr{ψP ψA + γmψP γmψA} = 2c6

mTr{FψA},
c8
m∂ε|ε=0Tr

{
γ T

a ψP γ T
a ψA − γaψP γaψA

} = −2c8
mTr{γaFγaψA}.

Thus lemma 2.5 yields

(4π)−m/2
∫

∂M

Tr
{
2c6

mFψA − 2c8
mFγaψAγa

}
dy + · · ·

= − 3 − m

2(m − 2)
(4π)−m/2

∫
∂M

Tr{F(3 − m)ψA − FγaψAγa} dy + · · · . (4d)

To complete the proof of assertion (1), we must show equation (4d) yields two linearly
independent relations. If we set F = ψA = √−1γ1, then ψ∗

A = ψA, γmψAγm = ψA, and

Tr(FψA) = Tr{Id} and Tr(FγaψAγa) = (m − 3) Tr{Id}.
If we set F = ψA = γ1γ2γ3, then ψ∗

A = ψA, γmψAγm = A, and

Tr(FψA) = Tr{Id} and Tr(Fγaψaγa) = (m − 7) Tr{Id}.
Assertion (1) follows. Assertion (1) and lemma 3.2 imply assertion (2). �

5. A special case calculation on the ball

In order to find the remaining unknown coefficients c2
m and c16

m we evaluate the leading
coefficients in the asymptotic of the eta invariant for an example on the ball. We first describe
the setting considered.

Let r ∈ [0, 1] be the radial normal coordinate and d�2 the usual metric on the unit sphere
Sm−1. Then the standard metric on the ball is ds2 = dr2 + r2 d�2. The inward unit normal
on the boundary is −∂r . For this metric, the only nonvanishing components of the Christoffel
symbols are

�abc = 1

r
�̃abc and �abm = 1

r
δab;



Eta invariants 8115

the second fundamental form is given by Lab = δab. We will use �̃abc to refer to the
Christoffel symbols associated with the metric d�2 on the sphere Sm−1. We will consider the
Dirac operator P = γ ν∂ν on the ball; we take the flat connection ∇ and set ψP = 0. We
suppose m even (there is a corresponding decomposition for m odd) and use the following
representation of the γ -matrices,

γa(m) =
(

0
√−1 · γa(m−1)

−√−1 · γa(m−1) 0

)

and

γm(m) =
(

0
√−1 · 1m−1√−1 · 1m−1 0

)
.

We stress that the matrices γj(m) are the γ -matrices projected along some vielbein system ej .
We decompose ∇j = ej + ωj where ωj = 1

4�jklγk(m)γl(m) is the connection-1 form of the spin
connection. If ∇̃ denotes the connection on the sphere, we have

∇a = 1

r

((∇̃a 0
0 ∇̃a

)
+

1

2
γ T

a(m)

)
.

This allows us to decompose the Dirac operator on the ball into a radial part and a part living
on the sphere. In detail, if P̃ is the Dirac operator on the sphere, we have

P =
(

∂

∂xm

− m − 1

2r

)
γm(m) +

1

r

(
0

√−1P̃

−√−1P̃ 0

)
.

Let ds be the dimension of the spin bundle on the disk; ds = 2m/2 if m is even. The spinor
modes Z(n)

± on the sphere are discussed in [13]. We have

P̃Z(n)
± () = ±

(
n +

m − 1

2

)
Z(n)

± () for n = 0, 1, . . . ;

dn(m) := dimZ(n)
± () = 1

2
ds

(
m + n − 2

n

)
.

Let Jν(z) be the Bessel functions. These satisfy the differential equation [24]

d2Jν(z)

dz2
+

1

z

dJν(z)

dz
+

(
1 − ν2

z2

)
Jν(z) = 0.

Let Pϕ± = ±µϕ± be an eigenfunction of P. Modulo a suitable radial normalizing constant
C, we may express

ϕ
(+)
± = C

r(m−2)/2

(√−1Jn+m/2(µr)Z
(n)
+ ()

±Jn+m/2−1(µr)Z
(n)
+ ()

)
, (5a)

and

ϕ
(−)
± = C

r(m−2)/2

(
±Jn+m/2−1(µr)Z

(n)
− ()

√−1Jn+m/2(µr)Z
(n)
− ()

)
. (5b)

We next impose the boundary conditions. We choose for ε ∈ R the boundary endomorphism

ψA = εγm(m) + 1
2Laa Id (5c)

such that

ψA = γm(m)ψ
∗
Aγm(m) + Laa Id.



8116 P Gilkey et al

This guarantees that PA is self-adjoint (see lemma 2.1, assertions (2) and (3)). For this setting
the general form of the leading coefficients for the eta invariant are obtained from lemmas 3.1
and 3.5. Noting that the volume of the (m − 1)-dimensional sphere is 2πm/2/�(m/2), and
that

Tr{γmψA} = −εds,

one finds

a
η

2 (1, P ,A) = −c2
m

εds

√
π

2m−2�
(

m
2

) , (5d)

a
η

3 (1, P ,A) = c16
m

(m − 3)εds

2m−1�
(

m
2

) . (5e)

Thus finding explicit answers for this example will allow us to determine c2
m and c16

m . We
proceed towards this goal.

For the ψA given in (5c) the boundary operator A is given by

A =
(−P̃ iε

iε P̃

)
.

We need to find the spectral projection on those eigenspinors of A whose eigenvalues have
a positive real part. The endomorphism ψA chosen allows us to obtain closed forms for all
eigenvalues ±µn and eigenspinors

(
α±

1 , α±
2

)
defined by the differential equation

A

(
α±

1

α±
2

)
=
(−P̃ iε

iε P̃

)(
α±

1

α±
2

)
= ±µn

(
α±

1

α±
2

)
.

Let

λn = n + 1
2 (m − 1)

be the eigenvalues associated with ε = 0 [23]. One can then show that

µn =
√

λ2
n − ε2

and (
α+

1

α+
2

)
=



√−1ε

2λn
Z

(n)
+ + Z

(n)
−

1
2λn

(√
λ2

n − ε2 + λn

)
Z

(n)
+ + 1√−1ε

(√
λ2

n − ε2 − λn

)
Z

(n)
−


 ,

(
α−

1

α−
2

)
=

 Z

(n)
+ −

√−1ε
2λn

Z
(n)
−

− 1√−1ε

(√
λ2

n − ε2 − λn

)
Z

(n)
+ + 1

2λn

(√
λ2

n − ε2 + λn

)
Z

(n)
−


 .

We choose ε < (m − 1)/2 such that all eigenvalues µn are real. The solutions are normalized
such that in the limit ε → 0 they reduce to the previously determined solutions in [23].

We want to suppress the projection on the positive spectrum of A. Using the solutions
given in equations (5a) and (5b) this is easily accomplished. Projecting ϕ

(+)
± onto the positive

spectrum of A gives the implicit eigenvalue condition

Jλn− 1
2
(µ) ∓ ε√

λ2
n − ε2 + λn

Jλn+ 1
2
(µ) = 0,

whereas projecting ϕ
(−)
± produces

Jλn− 1
2
(µ) ± 1

ε

(√
λ2

n − ε2 − λn

)
Jλn+ 1

2
(µ) = 0.
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Combining the equations for the positive eigenvalues of PA, we have the condition(
Jλn− 1

2
(µ) − ε√

λ2
n − ε2 + λn

Jλn+ 1
2
(µ)

)(
Jλn− 1

2
(µ) +

1

ε

(√
λ2

n − ε2 − λn

)
Jλn+ 1

2
(µ)

)
= 0.

For the present purpose it will be sufficient to find the unknown multipliers c2
m and c16

m

multiplying a linear term in ψA. Therefore we only need to pick up linear terms in ε and we
will consider only terms up to the order ε explicitly. Having that in mind we write the implicit
eigenvalue condition for positive eigenvalues instead as

Jλn− 1
2
(µ)

(
Jλn− 1

2
(µ) − ε

λn

Jλn+ 1
2
(µ)

)
+ O(ε2) = 0. (5f )

To simplify the notation, set

p = λn − 1
2 and dn(m) = dp(m).

Furthermore, we use the recursion for Bessel functions, see [24],

z
d

dz
Jp(z) − pJp(z) = −zJp+1(z),

to rewrite (5f ) such that only the index p appears,

Jp(µ)

(
Jp(µ)

[
1 − εp

µ(p + 1/2)

]
+

ε

p + 1/2
J ′

p(µ)

)
+ O(ε2) = 0. (5g)

Proceeding similarly with the negative eigenvalues of PA the outcome is

Jp(µ)

(
Jp(µ)

[
1 +

εp

µ(p + 1/2)

]
− ε

p + 1/2
J ′

p(µ)

)
+ O(ε2) = 0. (5h)

Using Cauchy’s residue theorem these equations allow us to rewrite the eta function

η(s;P,A) =
∑

µ

(sign(µ))|µ|−s

in terms of a contour integral, a technique recently described in detail in [8–10, 29]. The
coefficients in the asymptotic expansion (1c) are then determined by evaluating residues of η

according to [21]

Res η(m − n;P,A) = 2a
η
n(1, P ,A)

�
(

m−n+1
2

) . (5i)

We will need the residues at s = m − 2 and s = m − 3 in order to determine the coefficients
a

η

2 and a
η

3 .
Neglecting systematically the higher order terms in ε, we use a suitable counterclockwise

contour C enclosing all the solutions of the equations (5g) and (5h) to write the eta function
as (from now on it will be understood that this is the eta function up to the order ε)

η(s;P,A) =
∑

p

dp(m)

∫
C

dk

2πi
k−s ∂

∂k

×
{

ln

[
Jp(k)

(
Jp(k)

[
1 − εp

k(p + 1/2)

]
+

ε

p + 1/2
J ′

p(k)

)]

− ln

[
Jp(k)

(
Jp(k)

[
1 +

εp

k(p + 1/2)

]
− ε

p + 1/2
J ′

p(k)

)]}

=
∑

p

dp(m)

∫
C

dk

2πi
k−s ∂

∂k

{
ln

[
1 − εp

k(p + 1/2)
+

ε

p + 1/2

J ′
p(k)

Jp(k)

]
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− ln

[
1 +

εp

k(p + 1/2)
− ε

p + 1/2

J ′
p(k)

Jp(k)

]}

=
∑

p

dp(m)p−s

∫
C

dz

2πi
z−s ∂

∂z

{
ln

[
1 − εp

zp(p + 1/2)
+

ε

p + 1/2

J ′
p(zp)

Jp(zp)

]

− ln

[
1 +

εp

zp(p + 1/2)
− ε

p + 1/2

J ′
p(zp)

Jp(zp)

]}
.

In the last equation we substituted k = zp in order to allow later on for a straightforward
application of the formulae for the uniform asymptotic expansion of the Bessel functions.
Again, expanding up to the order ε term, we write instead

η(s;P,A) = 2ε
∑

p

dp(m)p−s

∫
C

dz

2πi
z−s ∂

∂z

{
− 1

z(p + 1/2)
+

1

p + 1/2

J ′
p(zp)

Jp(zp)

}
.

The next step in the procedure is to shift the contour towards the imaginary axis, turning the
Bessel function Jp into the Bessel function Ip. In detail, we find

η(s;P,A) = −2ε

π
cos

(πs

2

)∑
p

dp(m)p−s(p + 1/2)−1
∫ ∞

0
dz z−s d

dz

{
1

z
− I ′

p(zp)

Ip(zp)

}
.

The residues of the eta function are completely determined by the asymptotic behaviour of
the Bessel functions (see [29] for details). Therefore we need to introduce some additional
notation dealing with the uniform asymptotic expansion of the Bessel function Ip(k). For
p → ∞ with z = k/p fixed, we make use of the uniform asymptotic expansion of the Bessel
function Ip(zp) and the derivative I ′

p(zp). In detail, the relevant results are [1]

Ip(zp) ∼ 1√
2πp

epη

(1 + z2)1/4

[
1 +

∞∑
l=1

ul(t)

pl

]
,

I ′
p(zp) ∼ 1√

2πp

epη(1 + z2)1/4

z

[
1 +

∞∑
l=1

vl(t)

pl

]
,

(5j )

where

t = 1/
√

1 + z2 and η =
√

1 + z2 + ln
[
z/(1 +

√
1 + z2)

]
. (5k)

Let u0(t) = 1. We use the recursion relationship given in [1] to determine the polynomials
ul(t) and vl(t) which appear in equations (5j ) and (5k),

ul+1(t) = 1

2
t2(1 − t2)u′

l (t) +
1

8

∫ t

0
dτ(1 − 5τ 2)ul(τ ),

vl(t) = ul(t) + t (t2 − 1)

[
1

2
ul−1(t) + tu′

l−1(t)

]
.

In particular we have

u1(t) = 1
8 t − 5

24 t3, v1(t) = − 3
8 t + 7

24 t3.

The required leading two contributions from the asymptotic expansion are then given by

B0(s;P,A)=−2ε

π
cos

(πs

2

)∑
p

dp(m)p−s(p + 1/2)−1
∫ ∞

0
dz z−s d

dz

{
1

z

(
1 −

√
1 + z2

)}
,

B−1(s;P,A) = 2ε

π
cos

(πs

2

)∑
p

dp(m)p−s(p + 1/2)−1
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×
∫ ∞

0
dz z−s d

dz

{√
1 + z2

z

(
1

p
[v1(t) − u1(t)]

)}

= − ε

π
cos

(πs

2

)∑
p

dp(m)p−s−1(p + 1/2)−1
∫ ∞

0
dz z−s d

dz

z

1 + z2
.

The integrals can be evaluated with the help of the beta function (see [24]). Using

�

(
−1 + s

2

)
= − π

cos
(

πs
2

)
�
(

3+s
2

)
the answers obtained are

B0(s;PA) = − ε

π
cos

(πs

2

) �
(− s+1

2

)
�
(
1 + s

2

)
√

π

∑
p

dp(m)p−s(p + 1/2)−1

= ε
�
(
1 + s

2

)
√

π�
(

3+s
2

) ∑
p

dp(m)p−s(p + 1/2)−1

B−1(s;PA) = − sε

2

∑
p

dp(m)p−s−1(p + 1/2)−1.

The remaining summations are related to the spectrum on the sphere. Let d := m − 1. We
define the base zeta-function ζSd and the Barnes zeta-function ζB [6],

ζSd (s) =
∞∑

n=0

dn(m)p−2s and ζB(s, a) =
∞∑

n=0

dn(m)(n + a)−s .

We then have the relation

ζSd (s) = 1

2
dsζB

(
2s,

m

2
− 1

)
.

Using the Barnes zeta-function, up to terms that are irrelevant for the present purpose because
their residues are located to the left of s = m − 3, we find

B0(s;P,A) = 1

2
dsε

�
(
1 + s

2

)
√

π�
(

3+s
2

) {ζB

(
s + 1,

m

2
− 1

)
− 1

2
ζB

(
s + 2,

m

2
− 1

)
+ · · ·

}
,

B−1(s;P,A) = −1

4
sεds

{
ζB

(
s + 2,

m

2
− 1

)
+ · · ·

}
.

This reduces the analysis of the eta function on the ball to the analysis of ζB(s, a). To compute
the relevant residues, we first express ζB(s, a) as a contour integral. Let C be the Hankel
contour.

ζB(s, a) =
∞∑

n=0

(
d + n − 1

n

)
(n + a)−s =

∑
m∈N

d
0

(a + m1 + · · · + md)
−s

= �(1 − s)

2π

∫
C

dt (−t)s−1 e−at

(1 − e−t )d
.

The residues of ζB(s, a) are intimately connected with the generalized Bernoulli polynomials
[38],

e−at

(1 − e−t )d
= (−1)d

∞∑
n=0

(−t)n−d

n!
B(d)

n (a). (5l)



8120 P Gilkey et al

We use the residue theorem to see that

Ress=zζB(s, a) = (−1)d+z

(z − 1)!(d − z)!
B

(d)
d−z(a), (5m)

for z = 1, . . . , d. The required leading poles are

Ress=dζB(s, a) = 1

(d − 1)!
, Ress=d−1ζB(s, a) = d − 2a

2(d − 2)!
.

This shows

Res B0(d − 1;P,A) = 1

2
dsε

�
(

m
2

)
√

π�
(

m+1
2

)
(m − 2)!

,

Res B0(d − 2;P,A) = 1

4
dsε

�
(

m−1
2

)
(m − 3)√

π�
(

m
2

)
(m − 2)!

,

Res B−1(d − 2;P,A) = −1

4
dsε

(m − 3)

(m − 2)!
,

and these are all the terms contributing to the residues of η at s = d − 1 and s = d − 2.
Comparing with (5d) and (5e), after suitable rearrangements of the �-function [24], we use
the doubling formula

�(2x) = 22x−1

√
π

�(x)�

(
x +

1

2

)
,

and �(x + 1) = x�(x), we read off

c2
m = −1

4
β(m), c16

m = 1

2(m − 2)

(
1 − 1

2
π(m − 1)β(m)

)
.

This completes the proof of theorem 1.2.
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